(9) INDIAN SCHOOL AL WADI AL KABIR

Post Mid-Term Examination (2023-24)

Class VIII
Date:

Sub: MATHEMATICS
ANSWER KEY

Max Marks: 30
Time: 1 hour

Instructions:

Section A: Multiple Choice Questions (Q. 1 to Q.6)
Section B: Source based questions (Q. 7 to Q.11)
Section C: Long Answer Questions (Q. 12 to Q .15)
Section D: Case study Questions (Q. 16 to Q.17)

Section A: Multiple Choice Question (Q. 1 to Q.6) of $\mathbf{1}$ mark each							
1.	The value of $\sqrt[3]{25 \times 15 \times 9}$ is:						
	A		B	C	15	D	
2.	The unit place digit in the cube of 175616 is:						
	A	6	B	C		D	
3.	$A B C D$ is a rhombus having area $240 \mathrm{~cm}^{2}$ and $A O=8 \mathrm{~cm}$, then length of $B D$ will be equal to:						
	A		B	C		D	30 cm
4.	If the volume of air in a container is $792 \mathrm{~m}^{3}$ and the area of its base is $132 \mathrm{~m}^{2}$, then the height of the container is:						
	A		B	C	6 m	D	

5. The perimeter of a square and its side is in:
A \quad Direct Proportion
B
C
D
6. In a village 12 men can dig a well in 8 days. How many men can dig it in 6 days?
A
A
B
16

D

Section B: Source based questions (Q. 7 to Q.11) of $\mathbf{1}$ mark each
Ravi, Raju, Sonu and Shyama are playing a game with chits. If a person picks a chit then he has to ask a question based on that chit. Find the correct option to the given question.

7. Raju picked a chit with a number which is a perfect square and a perfect cube. The number Raju picked up is:
A
B
64
C
D
8. Ravi picked a number 128 , find the smallest number to be multiplied to it, will form a perfect cube:

A	B	C	4	D	

9. Sonu selected a chit having a number 1200, find the number of zeros in the cube of it.

A	6	B	C		D	

10. Shyama took a chit, in that the prime factorization of a number is given as
$2 \times 11 \times 2 \times 2 \times 5 \times 2$. Find the least number to be divided so as to make it as a perfect cube.

| \mathbf{A} | B | C | | \mathbf{D} | 110 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

	(2m) for table$\begin{array}{ll} a \times 60=150 \times 200 \\ & \text { A }=\frac{150 \times 200}{60}=500 \mathrm{~cm} \\ b \times 80=60 \times 150 & (1 / 2 \mathrm{~m}+1 / 2 \mathrm{~m}) \\ \text { b }=\frac{60 \times 90}{150}=36 & (1 / 2 \mathrm{~m}+1 / 2 \mathrm{~m}) \end{array}$			
Section D: Case study (Q. 16 \& Q.17) of 4marks each				
16.	Case Study-1: A right-circular cylindrical water tanker supplies water to colonies on the outskirts of a city and to nearby villages. There are two water tanks in each colony which are of cuboidal and cubical in shape. In villages, people come with matkas (spherical clay pots) to fill water for their household chores. Use this information, answer the following questions.			

(i) Find the volume of the cuboidal water tank inlitres

Volume $=3 \times 2 \times 7=42$ cubic. $\mathrm{m}=42000$ litres
(ii) Find the lateral surface area of the cubical tank.

$$
\mathrm{LSA}=4 a^{2}=4 \times 4 \times 4 \quad=64 \mathrm{sq} \cdot \mathrm{~m} \quad(1 / 2 \mathrm{~m}+1 / 2 \mathrm{~m})
$$

(iii) Find the curved surface area of the cylindrical container
$\operatorname{CSA}=22 \pi r h=2 \times \frac{22}{7} \times 1 \times 70=440 m^{2} \quad(1 / 2 m+1 / 2 m)$
(iv) Find the base area of the cuboidal tank. $\pi r^{2}=\frac{22}{7} \times 1 \times 1$

$$
=\frac{22}{7}=3.14 m^{2} \quad(1 / 2 m+1 / 2 m)
$$

17. Case Study-2:

Speedy express is a train that connects two small towns A and B. One day a group of friends decided to take a trip from town A to town B. If the usual speed of train is $80 \mathrm{~km} / \mathrm{h}$, it would take 5 hours to reach the destination.

On the basis of this information, answer the
 following questions:
(i) Identify the proprtion for the following:
" Speed of the vehicle and the time taken for a fixed journey"
Ans: Inverse proportion
(ii) Find the constant of variation of speed of the train to the time taken.

Constant of variation, $k=80 \times 5=400$ (1m)
(iii) If the speed of the train is $100 \mathrm{~km} / \mathrm{hr}$, then what will be the duration of journey from town A to town B.
$80 \mathrm{~km} / \mathrm{h} \quad 100 \mathrm{~km} / \mathrm{h}$
5 a
$a \times 100=80 \times 5$
$a=\frac{80 \times 5}{100}=4 \mathrm{hrs} \quad(1 / 2 \mathrm{~m}+1 / 2 \mathrm{~m})$
(iv) On return journey, the train reaches town A within 8 hours from town B, then what will be the speed of the train.

80 km/h
b
5 8
$b \times 8=80 \times 5$
$A=\frac{80 \times 5}{8}=50 \mathrm{~km} / \mathrm{h}$
$(1 / 2 m+1 / 2 m)$

